A User-Friendly, Two-Zone Heat Release and Emissions Model

Jeremy Cuddihy Major Professor: Dr. Steve Beyerlein

Objectives

Develop In-Class Activities Spark-Timing Emissions BSFC

College of Engineering

Weibe Function

Weibe function is used to predict the combustion burn profile

$$X_{b(\theta)} = 1 - \exp\left[-a\left(\frac{\theta(i) - \theta_o}{\theta_b}\right)^{k+1}\right]$$

 $X_{b(\theta)}$ =fraction of fuel mass burned at specific crank angle

 θ_0 =Spark advance

 θ_b =Burn duration

a, k = constants fit to a specific engine (approximately 5,2)

•Can be fit a specific engine with a measured pressure trace (using polytropic relationships)

Cylinder Volume

• The engine volume (as a function of crank angle) can be calculated using engine geometry

$$V(\theta) = V_c + \frac{\pi B^2}{4}(l + a - s)$$

V_c=clearance volume

B=bore

l=connecting rod length

a=crank radius (1/2 of stroke)

s=instantaneous distance between piston pin and crank axis

Single-Zone Model

- •Combustion chamber is treated as a single, ideal gas (air).
- •Bulk temperature and pressure profiles are predicted using the ideal gas law.
- •Used to predict a pressure trace, engine power.
- •Bulk, average temperature is ineffective in predicting emissions.

Single-Zone Modifications

•Engine friction can be modeled linearly. Empirical equations can be found for many applications (motorcycle shown) fmep = 250(L)(RPM)L = stroke

•The specific heat ratio can be modeled as a function of temperature. A curve-fitted equation was used in this model.

Two-Zone Model

•Splits the single zone model into "burned" and "unburned" zones.

1.)
$$m_u(i) = m_u(i-1) + \frac{dX_b}{d\theta}(i)m_c$$

2.)
$$V_{u}(i) = \left(\frac{m_{u}(i)V_{u}(i-1)}{m_{u}(i-1)}\right) \left(\frac{P(i)}{P(i-1)}\right)^{\frac{1}{\gamma_{u}}}$$

3.)
$$V(i) = V_u(i) + V_b(i)$$

- •Elevated "Burned" zone temp. is used to predict emissions.
- •Can't be used for power predictions (discontinuous Temp. Profile).

Heat Transfer Prediction Methods

•Heat transfer prediction methods are derived from Newton's law of cooling.

$$\frac{dQ_{w}}{dt} = hA(T - T_{w})$$

T_w=wall temperature (constant)
A=instantaneous heat transfer area
h=heat transfer coefficient

•Both methods use empirical equations to calculate "h".

- Woschni's method splits process into respective combustion periods.
- Woschni assumed gas velocities were proportional to the mean piston speed.
- Annand included radiative terms. Annand assumed "pipe flow characteristics".

Modeling NO Formation

Formation Mechanisms

- (1) Zeldovich mechanism

 High Temperature Combustion (above 1800 K)
- (2) The prompt mechanism

 Low Combustion Temperatures, When Fuel Contains Nitrogen
- (3) The N₂O-intermediate mechanism *Lean, Low Temperature Combustion*
- (4) The NNH mechanism

 Least Understood, Important in Hydrogen Combustion
 - •Only the general Zeldovich mechanism was used in this model:

1.)
$$0 + N_2 \overrightarrow{k_{1_f}} NO + N$$

2.)
$$N + O_2 \overrightarrow{k_{2_f}} NO + O$$

Modeling NO Formation Continued

•Rate of NO formation is expressed as:

$$\frac{d[NO]}{dt} = 2k_{1f}[O]_{e}[N_{2}]_{e}$$

- •k_{1f} (forward reaction rate coefficient) was found using an Arrhenius equation and values from a lookup-table.
- •Rich combustion required equilibrium constants for the water-gas-shift reaction and dissociation of CO₂.

Water-Gas Shift Reaction

$$\mathsf{CO_2} + \mathsf{H_2} \Longleftrightarrow \mathsf{CO} + \mathsf{H_2O}$$

Dissociation of CO₂

$$CO_2 \iff CO + \left(\frac{1}{2}\right)O_2$$

HC Emissions Due to Crevices

- •Flames require a minimum distance in order to propagate through an opening, otherwise the flame is extinguished.
- •In cold-engine operation, crevices and cylinder walls also work as a heat sink creating fuel pooling.
- •This model included piston ring pack crevices and a correction factor due to spark-plug offsets.

HC Oil Layer Absorption and Desorption

- •HC molecules absorb into the oil film on the intake and compression cycles.
- •HC continue to absorb past saturation due to rising vapor pressures (reference Henry's Law).
- •The post-combustion imbalance in concentrations (between the oil layer and combustion chamber gases) causes HC desorption.

Henry's Law →

 $x_a = \frac{p_a}{H}$

 x_a = mole fraction of "a" p_a = partial pressure of "a" H = Henry's Constant

MATLAB Model

- The main MATLAB simulation was stored in a script.
- Functions were generated to predict emissions and volumetric efficiencies.
- Sub-functions were created to plot BSFC and emissions maps.

Model Inputs

```
%Engine Inputs
 Load = 1:
                 %Engine Load (Affects Inlet Pressure)
 RPM = 10500;
                     %Revolutions Per Minute [1/min]
 L = (53.6/1000); %Stroke of Engine [m]
 B = (77/1000); %Bore of Engine [m]
 1 = .0935;
                  %Length of Engine Connecting Rod [m]
                  %Number of Cylinders [unitless]
 N \text{ cyl} = 1;
                  %Compression Ratio [unitless]
 C r = 12.5;
 N r = 2;
                  %Number of Revolutions Per Power Stroke
 theta b = 85;
                  %Combustion Burn Duration [degrees]
 theta 0 = 155; %Crank Angle At Start of Combustion [degrees]
 theta f = theta O+theta b; %Final Comb. Angle [degrees]
 IVC = 0:
                     %Time [degrees] when Intake Valve Closes
 EVO = 314:
                    %Time [degrees] when Exhaust Valve Opens
%Fuel Inputs/Efficiencies
AF ratio stoich = 15.09; %Gravimetric Air Fuel Ratio (Stoich)
AF ratio mol sotich=14.7; %Molar Air Fuel Ratio (Stoich)
lambda = .90;
                         %Excess Air Coefficient
AF ratio ac = lambda*AF ratio stoich; %Actual Air Fuel Ratio
AF ratio mol=lambda*AF ratio mol sotich;
LHV = 44.6e6;
                          %Lower Heating Value Of Fuel Mixture [J/kg]
                        %Assumed MAX COmb. Efficiency
eta combmax = .95;
%Atmospheric Inputs
P atm = 101325;
T atm = 290;
P BDC = Load*P atm;
                      %Inlet Pressure[Pa] Moscow, ID
                      %Gas Constant For Air [J/kg-K]
R air = 287;
gamma(1:360) = 1.4;
                       %Preallocate Gamma Array (sets initial value)
T w = 350;
                        %Assumed Wall Temperature (Reference Stone)
```


Single-Zone Outputs

- The indicated cylinder pressure is predicted using the single-zone model.
- EVO cuts the plot off.
- IVC causes pressure to begin building.

- The bulk cylinder temperature is produced using the single-zone model.
- This is the average of the burned and unburned zones.

Two-Zone Outputs

- The two-zone model splits the bulk temperature into unburned and burned-zones.
- The burned-zone temperature is elevated in comparison to the bulk gas temperature.

- HC and NO emissions are displayed in the command window.
- Frozen NO composition was assumed at 90% of the peak burned-zone temperature.


```
Command Window

PPM_NO =

428.9110

Percentage of Fuel Mass Reaching Exhaust

HC =

2.2742
```


Comparing Model Outputs

<u>Variable</u>	<u>Woschni</u>	Annand	<u>Relative</u>	
			<u>Error</u>	
NO	429.57[PPM]	341.19[PPM]	20.57 [%]	
НС	2.47 [%]	2.27 [%]	8.10[%]	
Power	24.40 [kW]	22.76 [kW]	6.72[%]	
BMEP	1117.20[kPa]	1042.10 [kPa]	6.72[%]	
BSFC	334.30 [g/kW-h]	353.51 [g/kW-h]	5.75[%]	
	_	_		
Mechanical Efficiency	88.81 [%]	88.81 [%]	0[%]	
Combustion Efficiency	85.09 [%]	85.09 [%]	0[%]	

- •Woschni's method under-predicted the heat transfer coefficient
- •Woschni's method over-predicted torque and NO emissions.
- •Since NO formation is strongly temperature dependent, the 20% relative error shown was due to a difference in formation temperatures of approximately 120[K]

Experimental Setup

Acquired Data

- The BSFC map showed a trough in the plot at the upper right corner (~8500 RPM, 70% throttle).
- During Testing, the engine seized, so a complete map wasn't possible.
- Over testing range, minimum
 BSFC values were ~280[g/kW-h]

Comparing Data to Model

Power, Torque, BSFC

Source	TP	lambda	RPM	Power	Relative	Torque	Relative	BSFC	Relative
	(%)			(kW)	Error	(N*m)	Error	[g/kW-	Error
					(%)		(%)	h]	(%)
Experimental	63	.90	8500	12.90	2.09	14.51	7.51	358.12	3.80
Model	0.5	.90	0500	12.63	2.09	13.42	7.31	344.52	3.00
Experimental	70	.89	8052	13.20	.15	15.59	.58	345.48	3.28
Model	/0	.09	8032	13.22	.13	15.68	.50	334.14	3.20
Experimental	65.5	.88	7009	10.89	2.11	14.91	2.62	368.44	6.30
Model	03.3	.00	/009	10.66	2.11	14.52	2.02	345.22	0.50
Experimental	60.5	.88	5432	6.56	0	11.52	.09	384.02	5.99
Model	00.5	.00	3432	6.56	, v	11.53	.09	407.04	3.99
Experimental	55.5	.83	4958	6.11	2.29	11.80	2.63	382.68	8.61
Model	22.2	.03	4220	5.97	2.29	11.49	2.05	415.61	0.01

NO Emissions

RPM	TP (%)	Measured NO (PPM)	Predicted NO (PPM)	Relative Error (%)
3500	10	441.23	441.65	0.10
3500	20	481.82	469.97	2.46
3500	30	600.69	494.39	17.70

In-Class Activities

University of Idaho

College of Engineering

Spark-Timing and BSFC Plots

- An MBT spark-timing plot was constructed.
- This required an assumed air-fuel ratio and burn duration.
- The BSFC map required functions that simulated many loads, RPM, and assumed air-fuel ratios.
- A burn-duration model would improve the accuracy of the plot shown.
- The model also predicts throttle positions that may not be possible to operate at (i.e. 4000 RPM 100% throttle)

Emissions Maps

- The same functions that were used to create BSFC maps were used to create emissions maps.
- NO emissions ranged relative to combustion temperatures and airfuel ratios.

- HC emissions were high at low loads.
- HC emissions were related to combustion temperatures and the "quality" of combustion.

Conclusions

- •The model was valid at operating points from 50%-70% throttle.
- •No data points above 70% throttle and at high engine speeds were gathered due to engine failure.
- •A volumetric efficiency map at low throttle positions would be necessary.
- It's expected that relative error in BSFC calculations could be minimized by documenting fuel temperatures.

Future Work

Questions?

